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On Sneddon’s boundary conditions used in the analysis

of nanoindentation data
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Sneddon’s solution [1] on the indentation of an elastic
half-space with a rigid conical indenter has been the
basis of nanoindentation data analysis for more than
a decade [2]. In their finite element simulation, Hay,
Bolshakov, and Pharr find that Sneddon’s solution is not
an exact representation of the actual contact [3]. Both
the indenter shape and Sneddon’s solution have to be
modified before it can be used in the interpretation of
nanoindentation data. We find that this happens due to
the fact that Sneddon’s boundary conditions do not rep-
resent the actual contact. Because the points of the half-
space surface in the contact region move only along the
indenter surface in a real contact, the r -displacement
and z-displacement of those points are coupled. How-
ever, Sneddon’s boundary conditions only specify the
z-displacement. Sneddon’s way of specifying bound-
ary conditions is common in contact mechanics: people
only specify the z-displacement for rigid punch prob-
lems and take it for granted that the final surface shape
of the contact area is the same as that of the punch [4].
The correct boundary conditions for the actual contact
are presented in this paper. These boundary conditions
can be changed exactly to Sneddon’s boundary condi-
tions if there is no radial surface displacement. They can
also be changed approximately to Sneddon’s boundary
conditions if the half-included angle of the cone is near
90◦, i.e., within the limit of the linear elasticity. Similar
conclusions can be drawn for rigid smooth frictionless
axisymmetric indenters.

Sneddon’s boundary conditions for the indentation
of an elastic half-space by a rigid frictionless cone are
at z = 0 (see Fig. 1):

τzr = τzθ = 0, (0 ≤ r < ∞) (1)

σzz = 0, (r > a) (2)

uz(r, 0) = h − r cot φ, (0 ≤ r ≤ a) (3)

where φ is the half-included angle of the cone and φ <

90◦.
Using the linear elasticity theory, Sneddon gives the

radial displacement of the half-space surface within the
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contact region as [5]
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According to Equations (3) and (4), any point of the
half-space surface within the contact region will have
a vertical displacement and a radial displacement. If
there is no radial displacement, the deformed surface
within the contact region will be a cone described by
Equation (3). However, for most materials, ν �= 0.5, and
according to Equation (4), the radial displacement will
not be zero. The non-zero radial displacement will lead
to a curved surface within the contact region, which will
not conform to the rigid cone. From this point of view,
Sneddon’s boundary conditions do not describe a real
contact between a rigid cone and a half-space. In a real
contact, the surface points of the half-space within the
contact region move only along the rigid cone surface,
which implies that in the r -z plane, z-displacement and
r -displacement at any surface point of the contact area
are coupled. However, Sneddon’s boundary conditions
only specify the z-displacement.

For a real contact, the boundary conditions at z = 0
should be (see Fig. 2):

τzr = τzθ = 0, (0 ≤ r < ∞) (5)

σzz = 0, (r > a′) (6)

tan φ = r + ur (r, 0)

h − uz(r, 0)
, (0 ≤ r ≤ a′) (7)

where a′ is the radius of the future contact region be-
fore the deformation, and it will become a after the
deformation (a is the radius of the final contact area
after the deformation). Equation (7) guarantees that the
deformed surface of the contact area in the r -z plane
is straight. The unknown a′ can be solved through the
condition that the pressure on the indenter surface will
drop to zero at the edge of the contact area. After a′ is
solved, a is given by a = a′ + ur (a′, 0).
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Figure 1 Normal indentation of an elastic half-space with a rigid cone.

Figure 2 Displacements in a real contact.

If ur (r, 0) = 0, we have a = a′ and Equations (5)–
(7) will become Equations (1)–(3). Thus, Sneddon’s
boundary conditions represent the actual contact only
when ur (r, 0) = 0. Referring to Equation (4), which is
based on the linear elasticity theory, this happens when
ν = 0.5 for incompressible materials.

In the following discussions, we show Sneddon’s
boundary conditions are approximately correct if it is
used within the limit of linear elasticity, i.e., small de-
formations. The real z-displacement for a rigid cone—
half-space contact problem is (see Fig. 2)

uz = (uz)Sneddon + (−ur ) cot φ, (0 ≤ r ≤ a′) (8)

For small deformations, i.e., φ → 90◦, no matter what
ur is, we will always have uz → (uz)Sneddon. Thus,
within the limit of linear elasticity, Sneddon’s boundary
conditions are approximately correct and his solutions,
which are based on the linear elasticity theory, are valid.

In the nanoindentation theory [3, 6], Berkovich and
Vickers indenters are modeled as conical indenters with
a half-included angle φ = 70.32◦. A cube-corner in-
denter is modeled as a cone with φ = 42.28◦. For these
conical indenters, the half-space deformation in the
contact region at the indentation loading stage is out
of the range of linear elasticity theory, e.g., the change
of the surface normal direction corresponding to a cube-
corner indenter is 47.72◦ and for a Berkovich or Vickers
indenter, it is 19.68◦. Sneddon’s boundary conditions
are no longer valid for those indenters. This explains
why Sneddon’s solution, which is based on his bound-
ary conditions and the linear elasticity theory, is not
consistent with the finite element result of the contact

between a rigid cone (φ = 70.32◦) and an elastic half-
space by Hay et al. [3].

We have the following conclusions on Sneddon’s
boundary conditions:

1. Within the limit of linear elasticity theory,
Sneddon’s boundary conditions are an approximation
of the actual contact if the Poisson’s ratio for the half-
space, ν, is not equal to 0.5. They are an exact repre-
sentation of the actual contact if ν = 0.5.

2. For large deformations, Sneddon’s boundary con-
ditions are no longer valid unless the surface radial dis-
placement within the contact area is zero.

In the following discussions, we show that similar
conclusions can be drawn for rigid smooth frictionless
axisymmetric indenters.

In the linear elasticity theory, boundary conditions
for the indentation of an elastic half-space by a rigid
smooth frictionless axisymmetric indenter are given as
at z = 0 [4]:

τzr = τzθ = 0, (0 ≤ r < ∞) (9)

σzz = 0, (r > a) (10)

uz(r, 0) = h + f (r ), (0 ≤ r ≤ a) (11)

where f (r ) describes the indenter shape and h is
the indentation depth. f (r ) is a smooth function and
f (0) = 0.

Using the integral transform method [5], we derive
the radial displacement of the half-space surface within
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the contact region and it can be expressed as

ur (r, 0) = −1 − 2ν
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where, J1(x) is the Bessel function of the first kind;
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Following the same argument for conical inden-
ters, we need to have ur (r, 0) = 0 (0 ≤ r ≤ a) in
order to represent the real contact with boundary
conditions (9), (10), and (11). According to Equa-
tion (12), it happens when ν = 0.5 for incompressible
materials.

If ur (r, 0) �= 0, the correct boundary conditions for
the real contact are

τzr = τzθ = 0, (0 ≤ r < ∞) (13)

σzz = 0, (r > a′) (14)

uz(r, 0) = h + f (r + ur (r, 0)), (0 ≤ r ≤ a′) (15)

Because f (r ) is a smooth function, Equation (15)
can be rewritten as

uz(r, 0) = h + f (r ) + f ′(r + θur (r, 0))ur (r, 0),

(0 ≤ r ≤ a′ and 0 < θ < 1) (16)

If only small deformation is considered, the direction
change of the surface normal vector within the con-
tact area should be negligible, i.e., f ′(r + θur (r, 0)) ≈
0 (0 ≤ r ≤ a′ and 0 < θ < 1). Equation (16) will
become

uz(r, 0) ≈ h + f (r ), (0 ≤ r ≤ a′) (17)

Thus, within the limit of linear elasticity theory,
Equation (11) is an approximation of the real contact.
It is an exact representation of the real contact if the
half-space media is incompressible materials.
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